
Journal of Fluids and Structures (1999) 13, 1069}1095
Article No.: j#s.1999.0242, available online at http://www.idealibrary.com on

0

PROPER ORTHOGONAL DECOMPOSITION OF
RANDOM WIND PRESSURE FIELD

Y. TAMURA AND S. SUGANUMA

Department of Architecture, Tokyo Institute of Polytechnics, Atsugi, Kanagawa, Japan

H. KIKUCHI AND K. HIBI

Institute of Technology, Shimizu Corporation, Koto, Tokyo, Japan

(Received 19 October 1998 and in revised form 12 April 1999)

This paper discusses the application of the Proper Orthogonal Decomposition (POD) tech-
nique to randomly #uctuating wind pressure "elds acting on a building surface. POD is
a method of detecting a new coordinate system which can most e$ciently represent the original
#uctuating phenomena. This method can identify the deterministic or systematic structure
hidden in the random #uctuations and thus help us to understand the phenomena better. It also
demonstrates that the coordinate system employed is the most e$cient, and can greatly reduce
the amount of data that needs to be stored to re-examine the phenomena. Precautions in its
application to random "elds with mean values and with a singular condition are also men-
tioned. Furthermore, this paper introduces an example of the method's application to the
evaluation of properties and the prediction of responses to wind forces acting on high-rise
buildings; the validity of the method is also veri"ed. ( 1999 Academic Press
1. INTRODUCTION

THE CHARACTERISTICS AND INFORMATION INVOLVED in random #uctuations of wind speeds or
wind pressures have so far been generally studied and identi"ed through their probabilistic
and statistical parameters, such as their probability distribution, cross-correlation function,
cross-spectral density, and so on.

Proper Orthogonal Decomposition (POD) is a method used to derive the most e$cient
coordinate system for observing individual phenomena, in the same way as the Principal
Component Analysis method. It can be applied to the analysis of random phenomena.
Several applications to wind engineering have been studied, e.g. by Armitt (1968), Lee
(1975), Best & Holmes (1983) and Kareem & Cermak (1984), who have demonstrated its
advantages. Following the above "rst stage application of the POD technique, Holmes and
his colleagues in particular put a lot of e!ort into developing the method, and made some
outstanding contributions to the wind engineering "eld. For example, Holmes (1990)
reviewed studies of the analysis and synthesis of pressure #uctuations on blu! bodies in
complex turbulent #ows using the POD technique, and Holmes (1992) applied POD to
determining e!ective static wind load distributions on a low-rise building. Holmes et al.
(1997) applied the POD technique to practical wind-resistant design of large roofs. How-
ever, because it was di$cult to simultaneously measure the #uctuating wind speed and wind
pressure at hundreds of points, the merits of POD application have not been su$ciently
emphasized. Recently, there have been advances in instrumentation technology due to the
development of computer systems. The multi-channel simultaneous #uctuating pressure
measurement system developed by Fujii et al. (1986) and Ueda et al. (1994) can simultaneously
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measure temporal data at 512 locations. This has greatly improved the quality of the tests
themselves and increased the volume of data gathered. To fully utilize the merits of POD,
the author and others have applied it and demonstrated its e!ectiveness. Bienkiewicz et al.
(1995) and Tamura et al. (1995) have applied POD to #uctuating wind pressure "elds on
low-rise building models. Kikuchi et al. (1997) have applied it to #uctuating wind pressure
"elds on high-rise building models, taking measurements at up to 500 points by using
a multi-channel simultaneous #uctuating pressure measurement system. They have shown
that POD analysis can identify the systematic structure hidden in random #uctuations and
thus greatly reduce the required amount of data that needs to be stored, by utilizing this
e$cient coordinate transformation.

This paper outlines the method and describes its characteristics, and demonstrates its
e!ectiveness by an example application to #uctuating wind pressure "elds. It also discusses
points to note in the application of POD to random "elds. Precautions in application to
random "elds with mean values and with a singular condition are mentioned. It is stressed
that this method can be a very e!ective tool not only in wind engineering, but also in the
analysis of random "elds and system responses.

2. POD ANALYSIS OF RANDOM FIELD AND ITS MEANING

2.1. POD ANALYSIS

POD is a kind of Karhunen}Loève decomposition, which is a probabilistic expression of
a method called Factor Analysis. This section brie#y explains POD analysis based on
Armitt (1968) and Bienkiewicz & Ham (1993) using a random #uctuating wind pressure
"eld. The physical meaning is emphasized, although the mathematical expressions used
may not precisely express some parts of the model.

It is assumed that the #uctuating wind pressure p(x, y, t) is in the two-dimensional plane.
Now, p(x, y, t) is in principle only a #uctuating component with a zero mean. The purpose of
the analysis is to "nd the deterministic coordinate function U(x, y) which best correlates
with all the elements of a set of randomly #uctuating wind pressure "elds.U(x, y) is derived
to maximize the projection from the randomly #uctuating wind pressure "eld p(x, y, t) to the
deterministic function U(x, y), i.e., in order to realize from the probabilistic standpoint:

PP p(x, y, t)U(x, y) dxdy"max. (1)

By normalizing equation (1),

::p(x, y, t)U(x, y) dx dy

(::U2(x, y) dx dy)1@2
"max (2)

is obtained. Since p(x, y, t) can take positive and negative values, the above equation is
maximized by a mean square method,

:: p(x, y, t)U(x, y) dx dy ::p(x@, y@, t)U(x@, y@) dx@ dy@
::U2(x, y) dx dy

"max, (3)

where the bar of the numerator denotes the temporal average. This becomes an eigenvalue
problem, and can be written as

PPR
p
(x, y, x@, y@)U(x@, y@) dx@ dy@"jU(x, y), (4)
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where R
p
(x, y, x@, y@) is a spatial correlation of the #uctuating wind pressure "eld. Where the

#uctuating wind pressure is discretely given at M points uniformly distributed, it can be
rewritten in the matrix form

R
p
U"jU, (5)

where R
p
is a spatial correlation matrix of the #uctuating wind pressure and M]M square

matrix. U and j denote an eigenvector and an eigenvalue of the spatial correlation matrix
R

p
, respectively. The desired deterministic coordinate function is obtained as the eigenvec-

tor by solving equation (5). Since an M]M square matrix has, in principle, M eigenvectors
U

m
(m"1, 2,2, M), M deterministic coordinate functions are found. The mth eigenvector

U
m

in the matrix form corresponds to the coordinate function U
m
(x, y) in the functional

form. By utilizing the orthogonality of the eigenvectors, the original #uctuating wind
pressure "eld is expressed as

p(x, y, t)"
M
+

m/1

a
m
(t)U

m
(x, y), (6)

where, a
m
(t) is the mth principal coordinate given by

a
m
(t)"

:: p(x, y, t)U
m
(x, y) dx dy

::U2
m
(x, y) dx dy

. (7)

The mth eigenvector U
m
(x, y) is called the mth eigenmode. It is noted that, as implied by

equation (6) using the expression with R, the integral of equation (7) has the meaning of
simple spatial total sum. For simplicity, the eigenvectors are normalized by letting the
denominator of equation (7) be unity as described in the following:

PPU2
m
(x, y) dx dy"1. (8)

The lower eigenmode can bring out in full relief the systematic structure hidden in the
random #uctuating wind pressure "eld, as discussed later. Therefore, it might be possible to
"nd a physical meaning that corresponds to the lower-order principal coordinate. Let
d
mn

be Kronecker's delta. The mean product of the mth and nth principal coordinates is
expressed as

a
m
(t)a

n
(t)"j

m
d
mn

. (9)

This equation shows that the correlation between two principal coordinates having di!er-
ing orders, a

m
(t) and a

n
(t) (mOn) is zero, i.e., they are uncorrelated and the eigenvalue j

m
is

equal to the mean square of the mth principal coordinates:

a2
m
(t)"j

m
. (10)

Furthermore, the mean square of wind pressure at a point (x, y) is expressed as

p2(x, y, t)"
M
+

m/1

j
m
U2

m
(x, y). (11)

It is noted that the "eld-total sum of the mean-square "eld of the #uctuating wind
pressure is equal to the sum of the eigenvalues. Thus, it is equal to the sum of the mean
squares of the principal coordinates:

PP p2(x, y, t) dx dy"PPG
M
+

m/1

j
m
U2

m
(x, y)H dx dy"

M
+

m/1

j
m
"

M
+

m/1

a2
m
(t) . (12)
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Meanwhile, POD analysis has to be conducted in principle on the #uctuating components
after subtracting the mean components, as discussed later. If the mean value is included, the
original meaning of the principal coordinate is distorted, and attention needs to be paid to
this phenomenon. That is, R

p
in equation (5) is actually a covariance matrix. Furthermore,

equation (12) implies that the "eld-total sum of the variance of #uctuating wind pressures is
equal to the sum of the eigenvalues and it is equal to the sum of the variance of the principal
coordinates, as seen in equation (10). It follows that the sum of the diagonal elements of
matrix R

p
becomes the sum of the eigenvalues.

When simultaneously dealing with the #uctuating wind pressure "eld and the #uctuating
wind speed "eld or considering the correlation of variables in di!ering unit systems,
homogenization of the variables is necessary. In this case, the variables standardized with
the standard deviation of unity at the mean value of zero are often employed, where
R

p
becomes the correlation coe$cient matrix. Indeed, the meanings of the eigenvalue,

eigenvector and principal coordinate change in individual cases.
When the eigenmode U

m
(x, y) and the principal coordinate a

m
(t) are obtained in the above

way, to be rigorous, the original #uctuating wind pressure "eld is expressed by equation (6).
However, reconstruction in the lower modes up to the Nth, where N(M, is often accurate
enough in an engineering sense and it can be approximated by

pL (x, y, t)"
N
+

m/1

a
m
(t)U

m
(x, y) (N(M). (13)

The number of modes appropriate to the reconstruction can be estimated by the proportion
c
m

and the cumulative proportion C
N
, de"ned next. The proportion of the mth principal

coordinate is de"ned as

c
m
"

j
m

+M
m/1

j
m

. (14)

Furthermore, this denotes the ratio of the mth eigenvalue to the sum of the eigenvalues, or
the ratio of the variance of the mth principal coordinate to the "eld-total sum of the
variance. The cumulative proportion up to the Nth mode is de"ned as

C
N
"

N
+

m/1

c
m
. (15)

The error level of the #uctuating wind pressure reconstructed according to equation (13)
using up to the Nth mode is estimated from 1!C

N
.

2.2. MEANING OF POD ANALYSIS

Since POD has already been used in wind engineering, it seems unnecessary to explain it in
plain terms here. However, since many researchers do not use it appropriately, e.g. in
connection with inclusion of mean components, it would be instructive to brie#y explain the
meaning of POD by using simple samples of #uctuating wind pressures p

1
(t), p

2
(t) and p

3
(t)

measured at three points. For convenience of subsequent discussion on the mean value
components, p

1
(t), p

2
(t) and p

3
(t) are assumed to contain the mean values in this section.

Figure 1 shows the temporal variations of the three wind pressure signals. Generally, the
periodicity hidden in such a random original #uctuation, the behavior of the advection of
the disturbance, and so on are identi"ed by observing Figure 1 with the help of information
such as the cross-correlation function, cross-spectral density and so on.



Figure 1. Fluctuating wind pressure.
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By the way, this is not simply a method of graphically showing the time-history of the
#uctuating wind pressure "eld. Tamura (1995) represented the instantaneous state of the
wind pressure "eld by a point in space consisting of the mutually orthogonal p

1
(t), p

2
(t) and

p
3
(t) axes. Thus, the record of the #uctuating pressure "eld for a given period can be

expressed by a trace of the point movement in the three-dimensional pressure space, as
shown in Figure 2. The trace of the movement is called &&state locus'' in Tamura (1995).
Temporal variation of the wind pressure "eld is thus completely represented by the state
locus. If there are more than three measuring points, graphical presentation becomes
di$cult, but this does not lose generality. The instantaneous wind pressure "eld composed
of M pressure signals, i.e., p

1
(t), p

2
(t),2, p

M
(t), shall be expressed by a point in M-

dimensional space, and even in such a situation, the temporal variation of the whole wind
pressure "eld can be captured only by the state locus. Figure 2 is drawn with the original
physical coordinates of the measured #uctuating wind pressures, but these coordinates are
not always optimum for observing the "eld. The POD analysis searches for a new mutually
orthogonal coordinate system which can most e$ciently capture the state locus. The
phenomena are observed by projecting the state locus onto this coordinate system, and this
new coordinate system is the principal coordinate system expressed in equation (7).

If the state locus shown in Figure 2 exists on a single plane (n-plane), it is better to stop
using the original three-dimensional physical coordinates and to observe the phenomena on
the n-plane. Since all the information of the #uctuating wind pressure "eld is included on
this plane, the state locus can be represented using only the two-dimensional orthogonal
coordinates of m(t) and g(t) on the n-plane, thus achieving a signi"cant reduction in
complexity. Simpli"cation of information not only helps us to understand the phenomena,
but can also economize the amount of data that needs to be stored for the simulation. Even
when employing the new orthogonal coordinate system on the n-plane, an in"nite number
of orthogonal coordinate systems can be chosen on this n-plane. Thus, by setting the



Figure 2. State locus of #uctuating wind pressure "eld.

Figure 3. State locus on same plane.
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temporary coordinate system of m(t) and g(t) on the n-plane as shown in Figure 3, the state
locus of the #uctuating wind pressure is depicted on this coordinate system. Here, it is seen
in this particular case that the state locus in Figure 3 tends to increase toward the right.
Thus, by taking a new coordinate axis a

1
(t) in this direction, if the state locus is projected

onto this axis, most of the information is also included on it. Therefore, the characteristics of
the wind pressure #uctuation can be almost entirely represented by the variation of the
value of the new coordinate a

1
(t). In the extreme case, provided that the state locus is just on

a line as shown in Figure 4 and the coordinate a
1
(t) is made to match with this line, all wind

pressure "eld information can be described only by the one-dimensional axis a
1
(t). Here, it is

meaningless to observe the phenomenon by leaving the physical coordinates p
1
(t), p

2
(t) and

p
3
(t) as they are. Although there are no such extreme cases, there is an axis which contains

the largest amount of #uctuation information. This is the axis which has the largest
projection from each point on the state locus.



Figure 4. State locus on same line.

Figure 5. Projection of state locus onto principal coordinate.
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The following procedure will make the projection to the coordinate axis largest. As
shown in Figure 5, the origin of axis a

1
(t) is taken at the position of the average value of the

state locus, thus maximizing the mean square of the readings a
1j

, obtained by projecting
each point onto the axis a

1
(t) as

p2
n1
"

1

M

M
+
j/1

a2
1j

. (16)

It is noted that since the origin of the axis a
1
(t) is set to the position of the mean state

locus, equation (16) in fact expresses the variance. This is not the mean square of the
pressure at all. This is an important point, and it is discussed in detail in the next section.

At any rate, the most e$cient new coordinate a
1
(t) can represent the random "eld. The

vector representing the direction of the coordinate axis is called the 1st eigenvector.
Furthermore, the reading a

1
(t) obtained by projecting the state locus in the #uctuating wind

pressure "eld to this new coordinate is called the "rst principal coordinate. The variance of
equation (16) corresponds to the "rst eigenvalue. The information presented by the princi-
pal coordinate a

1
(t) in Figure 5 comprises only the projected readings a

11
through a

15
, but

lacks information in the orthogonal direction. Since the state locus of the #uctuating wind
pressure "eld also has components in the axis orthogonal to a

1
(t), the "rst principal

coordinate cannot completely describe the #uctuating wind pressure. Thus, if the additional
principal coordinate axis a

2
(t) orthogonal to the axis a

1
(t) is employed, the values
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a
21

through a
25

projected from the state locus to the axis of a
2
(t) comprise the rest of the

information, and the two axes a
1
(t) and a

2
(t) can completely describe the #uctuating wind

pressure "eld in this particular case.
The principle is that the coordinate axis (the 1st mode) is "rst determined to maximize the

variance. The coordinate axis (the 2nd mode) orthogonal to this is next determined to
maximize the variance in the coordinate axis. Further, the coordinate axis (the 3rd mode)
orthogonal to these axes is determined to maximize the variance in the coordinate axis. If
there are a total of M #uctuating wind pressures, M coordinate axes are obtained by
repeating this process. However, in the real analysis, after solving the eigenvalue problem of
equation (5), M eigenvectors and principal coordinates are mathematically determined.

2.3. DISTORTION BY MEAN VALUE COMPONENTS

2.3.1. Comparison of the eigenvectors of a pressure ,eld with/without mean value components

Figures 6 and 7 compare the lowest three modes of the pressure "eld on a low-rise building
model obtained by two di!erent ways of calculating the spatial correlation matrix: with and
without inclusion of the mean value components. Here, the #uctuating wind pressures were
measured simultaneously at 494 pressure taps on the roof and the four wall surfaces of the
model by using a multi-channel simultaneous #uctuating pressure measurement system
(Ueda et al. 1994). However, the POD analysis was repeated for pressures on each of the
building surfaces treated separately. As shown in Tamura et al. (1995), the eigenvalues and
eigenvectors of the entire pressure "eld on the model consisted of all 494 pressure taps, and
those of the pressure "eld on each of the model surfaces are di!erent.

Table 1 compares the eigenvalues and proportions for the roof pressure "eld consisting of
204 pressure taps for the two cases. The distributions of the mean pressure coe$cient
and the #uctuating pressure coe$cient (standard deviation) for this model are shown in
Figures 8 and 9.

Even for the same original pressure "eld, the eigenvectors obtained are quite di!erent,
depending upon whether or not the spatial correlation matrix includes the mean value
components. The proportions of the 1st modes are also quite di!erent, as shown in Table 1:
98)0% with inclusion of the mean value, and 40)2% without inclusion. It is obvious that the
mean value components provide quite di!erent results and can lead to a di!erent under-
standing of the phenomena. Therefore, the question of whether or not the mean value
should be included has to be clari"ed.

In some wind engineering studies using the POD technique, e.g. Bienkiewicz & Ham
(1993), Davenport (1995) and Santi & HeHmon (1998), the mean value components were
included in the calculation of the spatial correlation matrix. The authors' group had also
included the mean value components in the early stage of its utilization of the POD
technique, e.g. Bienkiewicz et al. (1995) and Tamura et al. (1995).

Incidentally, the POD technique is the method of "nding the most e$cient axis which has
the most energy in terms of the mean square. As discussed in the previous section and as
shown in Figure 3, the most expanded directions of the state locus are sought out
sequentially. Thus, looking at the state locus, it is not di$cult to understand that the mean
value component should not be included in the calculation of the correlation matrix.

Here, it would be worthwhile to demonstrate the necessity of excluding the mean value in
the POD analysis and the spatial correlation matrix is calculated over all surfaces. Note
that the same discussion is available for di!erent mode shapes obtained by using a subset of
the full correlation matrix associated with each surface.
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2.3.2. Physical consideration of POD with/without inclusion of mean value components

To keep matters simple, a two-variable random "eld, i.e., p
1
(t) and p

2
(t), is considered.

Figure 10 shows an example of the state locus of the random "eld. The physical coordinate
(p

1
(t), p

2
(t)) moves around the mean position (p

1m
, p

2m
), and the state locus is extended for

a particular direction. It is obvious that this particular direction is the 1st principal
coordinate, and the second principal coordinate shall be normal to the "rst mode direction.

Here, the principal coordinates were also derived in two ways: one where the mean value
components were subtracted from the variables for the calculation of the space correlation
matrix; and the other including the mean values.

Table 2 and Figure 10 compare the obtained eigenvalues and eigenvectors of the space
correlation matrices by the above two di!erent methods. With inclusion of the mean value
components, the 1st mode and the 2nd mode eigenvalues are 103)1 and 2)03, which results in
98 and 2% proportions, respectively. This result is never consistent with Figure 10. In the
"gure, the ratio of the lengths of the two principal axes of the elliptic shape of the state locus
is almost 2 : 1, which suggests that the ratio of the eigenvalues of the 1st mode and 2nd mode
may be almost 22 : 12. However, without inclusion of the mean value components, the
eigenvalues of the 1st mode and 2nd mode are 4)11 and 1)02, and their contributions are
80 and 20%, respectively. This result can reasonably explain the state locus shown in
Figure 10.

The eigenvectors are also depicted in Figure 10. Without inclusion of the mean-value
components, as indicated by solid lines, the 1st mode eigenvector is directed almost along
the longer axis of the elliptic state locus and the 2nd mode along the minor elliptic axis. On
the other hand, with inclusion of the mean value components, as indicated by broken lines,
the direction of the 1st mode eigenvector almost coincides with that of the mean value
vector, and the 2nd mode eigenvector is simply normal to the 1st mode eigenvector. The 1st
mode and 2nd mode eigenvectors are basically governed by the direction of the mean value
vector, but do not have an essential relation with the characteristics of the #uctuating
components represented by the elliptic state locus.

Generally, inclusion of the mean value components results in a signi"cant 1st mode
proportion, such as 98 or 99%, and the 1st mode eigenvector tends to be almost identical to
the mean value vector as shown in Figure 10. The latter implies that the 1st mode shape
with inclusion of the mean value components becomes almost similar to the mean value
distribution. However, as seen from Figure 10, the actual #uctuation of the random "eld
does not necessarily relate to the direction of the mean value vector. Thus, inclusion of the
mean value vector distorts the true eigenvectors, and it is obvious that such eigenmodes
cannot help us to understand the randomly #uctuating "eld. The parameter to be maxi-
mized in equation (16) should actually be the &&variance'', not the &&mean square''. The
variable p(x, y, t) used in the POD analysis should be derived as the #uctuating component
by subtracting the mean value from the pressure data. It should be noted that, even if the
spatial correlation matrix includes the mean values, its eigenvectors are of course mutually
orthogonal, because they are derived as the mathematical eigenvalue solutions of any
matrix. Furthermore, the fully reconstructed signals also coincide with the original ones.
These are mathematically valid, but are unrelated to a physical validity. This fact could lead
to misunderstanding of the POD technique, and to misuse of the correlation matrix with
inclusion of the mean value components.

Here, the following fact would be important for the wind pressure "eld. If the direction of
the true 1st mode eigenvector coincides with that of the mean value vector or the 1st mode
shape and the distribution of mean values are similar, there might be no large di!erence
between the spatial correlation matrices with and without inclusion of the mean value



Figure 6. Eigenvectors for the lowest three modes of #uctuating pressures on surfaces of a low-rise building
model with inclusion of mean value components: (a) 1st mode; (b) 2nd mode; (c) 3rd mode.
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Figure 7. Eigenvectors for the lowest three modes of #uctuating pressures on surfaces of a low-rise building
model without inclusion of mean value components: (a) 1st mode; (b) 2nd mode; (c) 3rd mode.

POD OF RANDOM FIELD 1079



TABLE 1

Comparison of eigenvalues and proportions with/without inclusion of mean
value components for the "rst 10 modes for roof pressures on a low-rise

building model

Without mean value With mean value

Mode Eigenvalue Proportion (%) Eigenvalue Proportion (%)

1st 1411 40)20 22 970 98)00
2nd 295 8)40 223 0)95
3rd 224 6)39 40 0)17
4th 175 4)98 28 0)12
5th 128 3)66 21 0)09
6th 102 2)91 14 0)06
7th 80 2)29 9 0)04
8th 75 2)12 8 0)03
9th 61 1)74 8 0)03
10th 53 1)51 6 0)02

Figure 8. Distribution of mean pressure coe$cients on surfaces of a low-rise building model.

Figure 9. Distribution of #uctuating pressure coe$cients (standard deviation) on surfaces of a low-rise building
model.
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Figure 10. A state locus of a simple two-variable random "eld and eigenvectors obtained with (dotted lines) and
without (solid lines) inclusion of mean value components.

TABLE 2

Comparison of eigenvalues and proportions with/without inclusion of mean
value components for the random "eld shown in Figure 10

Without mean value With mean value

Mode Eigenvalue Proportion (%) Eigenvalue Proportion (%)

1st 4)11 80)1 103)11 98)1
2nd 1)02 19)9 2)03 1)9
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components. If the quasi-steady assumption is valid for the u-component, the pressure "eld
#uctuates, keeping the spatial distribution proportional to the mean pressure distribution.
Therefore, if the true 1st mode contribution predominates, its mode shape should be similar
to the mean pressure distribution under the quasi-steady assumption. Thus, the direction of
the true 1st mode eigenvector and the mean value vector can be one of the measures for
examining the quasi-steady assumption of the pressure "eld. However, even if such a condi-
tion is expected, this cannot be a reason for including the mean value components in the
POD analysis. The mean value should be excluded from the POD analysis, and its
contribution could be examined separately.



Figure 11. Eigenvectors (mode shapes) for sample A of the roof pressures obtained under the same wind
conditions as sample B: (a) 1st mode; (b) 2nd mode.

TABLE 3
Proportions of the "rst six modes for two samples of the roof
pressure "eld on a low-rise building model obtained under the

same wind conditions

Mode Sample A Sample B

1st 29)2% 30)6%
2nd 25)4 24)7
3rd 7)0 6)3
4th 3)1 3)4
5th 2)8 2)7
6th 2)3 2)4

Figure 12. Eigenvectors (mode shapes) for sample B of the roof pressures obtained under the same wind
conditions as sample A: (a) 1st mode; (b) 2nd mode.
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2.4. POD OF RANDOM FIELD WITH A SINGULAR CONDITION

In this section, it is demonstrated that the POD analysis does not always "nd e!ective
coordinates. Since it refers to an eigenvalue problem for the correlation (covariance) matrix
R

p
, results are not as expected when the eigenvalues become multiple roots. For example,

provided that there are two uncorrelated wind pressures with unit variances, the covariance
matrix is a second-order identity matrix. Therefore, the eigenvalues become multiple roots
and the eigenvectors cannot be uniquely determined in the sense of the POD analysis. Such
extreme cases do not happen in reality and the apparent eigenvectors are obtained. This can
further confuse the actual phenomena. However, if such characteristics of the POD are well
understood, the phenomena can be inversely analyzed from these incidents.

A case was studied of #uctuating wind pressures on the square #at roof of a low-rise
building in which the wind approached diagonally (453). The #uctuating wind pressures
were measured simultaneously at 256 pressure taps on the roof of the model, using the
multi-channel simultaneous #uctuating pressure measurement system.

Figures 11 and 12 show the 1st mode eigenvector, i.e., mode shape, U
1

and the 2nd mode
eigenvector U

2
obtained from two di!erent samples under the same conditions. Here, it is

the matter of course that both samples do not include mean value components. In sample A,
as shown in Figure 11, U

1
and U

2
are symmetric and antisymmetric, respectively, with

respect to the diagonal. In another sample B, as shown in Figure 12, both modes are
asymmetric but U

1
and U

2
are symmetric with each other. Table 3 shows the proportions

up to the 6th mode for samples A and B. In both of these samples, the 1st and the 2nd modes
are dominant and their proportions are almost equal. This suggests the existence of
a singular condition where two uncorrelated phenomena can contribute equally to the
#uctuating wind pressure "eld. This singular condition could not be completely satis"ed
due to the uncertainties of the measured data. As a result, there was some di!erence in their
proportions and contingent mode shapes were determined. However, it is considered that
there was no structural di!erence between the two samples. Figure 13 shows the state locus
for samples A and B projected on the "rst and second principal coordinate plane. The
Figure 13. State loci for the two samples of the roof pressures obtained under the same wind conditions:
(a) sample A; (b) sample B.
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samples show almost the same wedge-shaped distribution, although their directions di!er.
This supports the above discussions.

Holmes et al. (1996) describes another important special case in which the covariance
matrix is homogeneous. In this case, the eigenvectors form a Fourier series and the POD
becomes equivalent to a spectral analysis.

3. POD ANALYSIS FOR WIND PRESSURE ACTING ON TALL BUILDINGS

As an example demonstrating the e!ectiveness of POD in analyzing pressure "elds as well
as responses, the application of POD to wind pressure "elds on tall building models is
presented in this section.

Wind tunnel experiments were conducted using the approaching wind with a length scale
of 1

400
for a suburban terrain where the power-law index of the mean wind speed pro"le was

1
6
. Figure 14 shows a tall building model which is 10 cm square and 50 cm high. It has 500

wind pressure taps uniformly distributed over the surface of its four walls. The wind
pressure was measured simultaneously at all points using the multi-channel simultaneous
#uctuating pressure measurement system. The wind direction was set normal to the wall
face. The sampling interval of the #uctuating wind pressure was 0)00128 s, and 32 768
samples were obtained continuously for about 42 s. The reduced scale of time was about 1

100
and the data length of the experiments was equivalent to an actual time of about 70 min. It
is noted that the distortion of the pressure signals due to the connecting tube from the taps
to the sensors was corrected on the basis of the pre-obtained gain and phase characteristics.

3.1. DISTRIBUTION OF WIND PRESSURE COEFFICIENT

Figures 15 and 16 show the mean and the #uctuating wind pressure coe$cients. They are
the temporal mean and the standard deviation of the wind pressure at each point,
respectively, normalized by the mean velocity pressure at building roof height H. The
positive pressure on the windward wall increased at heights around 0)75H}0)8H and
decreased at the peripheral and the lower portions, as shown in Figure 15. The negative
pressures on the side and leeward walls were distributed relatively uniformly and did not
Figure 14. Pressure measurement model and analytical lumped-mass model for a high-rise building.



Figure 15. Distribution of mean wind pressure coe$cient on a high-rise building model.

Figure 16. Distribution of #uctuating wind pressure coe$cient on a high-rise building model.
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change much vertically. The #uctuating wind pressures shown in Figure 16 were distributed
fairly uniformly on the windward wall, but changed in a slightly complicated manner on the
side and windward walls. These changes indicate the e!ects of the vortices shed from the
side to the wake of the building and the #ow patterns with irregular and three-dimensional
disturbance caused by the #ow separation from the windward edges of the building.

3.2. MODE SHAPE

The subject to be analyzed was a 500]500 matrix whose diagonal and nondiagonal
elements were the variance and the covariance of #uctuating wind pressures, respectively. It
had 500 eigenvalues and eigenvectors. Figure 17(a}e) shows the lowest "ve eigenvectors
(mode shapes).

The 1st mode shape is bilaterally antisymmetric, as shown in Figure 17(a). As described
later, the 1st mode is closely related to the vortex shedding and becomes dominant for the



Figure 17. Eigenvectors (mode shapes) for the lowest "ve modes: (a) 1st mode; (b) 2nd mode; (c) 3rd mode; (d) 4th
mode; (e) 5th mode.

1086 Y. TAMURA E¹ A¸.



POD OF RANDOM FIELD 1087
across-wind force. The bilaterally antisymmetric pattern on the windward wall is similar to
the horizontal gradient of the mean wind pressure "eld. Under the quasi-steady assumption,
regarding the v-component of wind speed, the pressure "eld #uctuates in proportion to the
mean pressure gradient with the #ow angle for horizontal directions. Although the mean
pressure gradient for the horizontal direction does not exactly equal that for the horizontal
#ow angle, the result suggests a quasi-steady relationship with the v-component of the
#uctuating wind speed.

The 2nd mode shape is bilaterally symmetric, as shown in Figure 17(b). The 2nd mode
becomes dominant for the along-wind force. The similarity between the mode shape and the
mean wind pressure coe$cient indicates a quasi-steady relationship with the u-component
of the #uctuating wind speed, as discussed in an earlier section.

The 3rd mode shape is also bilaterally symmetric, as shown in Figure 17(c). This greatly
contributes to the along-wind force. The large value near the top of the windward corner on
the side wall suggests the e!ect of the highly three-dimensional #ow near the top.

The 4th mode shape is similarly bilaterally symmetric, as shown in Figure 17(d). There is
a large contribution to the along-wind force. The characteristic distribution on the wind-
ward wall is vertically nearly antisymmetric. Thus, when pushing the upper portion in the
along-wind direction, it tends to pull the lower portion and it does not contribute to the
along-wind base shear. However, it has a rotational e!ect on the building in the along-wind
direction as a couple of forces. It is noted that this mode shape is similar to the vertical
gradient of the mean wind pressure "eld on the windward wall. Under the quasi-steady
assumption, regarding the w-component of wind speed, the pressure "eld #uctuates in
proportion to the mean pressure gradient with the #ow angle for the vertical direction. As
with the v-component, the result also suggests a quasi-steady relationship with the w-
component of the #uctuating wind speed.

The 5th mode shape is bilaterally antisymmetric as shown in Figure 17(e), similar to the
1st mode shape. It also greatly contributes to the across-wind force. The characteristic point
of this mode shape is vertical antisymmetry. Therefore, there is very little contribution to
base shear, but it contributes to the overturning e!ect in the across-wind direction.

3.3. PROPORTION OF EACH MODE

Table 4 shows the eigenvalue, proportion and cumulative proportion for each mode. The
1st mode contributes 26)3%, and the 2nd mode 16)7%. The cumulative proportion up to the
100th mode is 93)5%, while there are a total of 500 modes. This means that about 20% of
the modes can reproduce a relatively detailed structure of the wind pressure #uctuations
acting on each point of the building surface within an error ranging from 6 to 7%. It is
necessary to match the detailed structures of the spatio-temporal #uctuation of the wind
pressure for the localized wind pressure at individual points. However, for the wind forces
given by their spatial integration, or for the response induced by them, the necessary
number of modes can be further reduced as described later.

3.4. POWER SPECTRAL DENSITY OF THE PRINCIPAL COORDINATE

Figure 18(a, b) shows the power spectral densities of the generalized wind forces and those
of the lowest "ve principal coordinates. Linear vibration modes of the building were
assumed for estimating the generalized wind forces. The power spectral density of the
generalized across-wind force has a sharp peak of the Strouhal component due to KaH rmaH n
vortex shedding, as shown in Figure 18(a). The power spectral densities of the 1st and the
5th principal coordinates also have a sharp peak at a similar position. It is found that the 1st



TABLE 4

Eigenvalues, proportions and cumulative proportions for the pressure "eld on
a high-rise building model

Cumulative
Mode Eigenvalue Proportion (%) proportion (%)

1st 132)00 26)30 26)30
2nd 83)70 16)70 43)00
3rd 32)60 6)51 49)51
4th 25)80 5)16 54)67
5th 25)20 5)04 59)71
* * * *

10th 7)19 1)44 71)43
* * * *

50th 0)74 0)15 89)24
* * * *

100th 0)26 0)05 93)47
* * * *

300th 0)06 0)01 98)50
* * * *

500th 0)01 0)00 100)00

Figure 18. Power spectral densities: (a) generalized wind forces; (b) principal coordinates for the lowest "ve
modes.
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and 5th modes closely relate to the vortex shedding and greatly contribute to the across-
wind force. However, the power spectral densities of the 2nd, the 3rd and the 4th principal
coordinates do not have the Strouhal peak, but are similar to that of the generalized
along-wind force. It is noted that the power spectral density of the generalized torsional
moment has a Strouhal peak and a peak probably induced by re-attachment near the
leeward edge of the side walls. It is supposed that mainly the 1st and the 5th modes may
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relate to the torsional moment. This demonstrates that torque is mainly produced by the
pressure distribution on the side walls due to vortex shedding, while the noncorrelation of
pressure on the windward and leeward walls provides an almost negligible contribution,
thus con"rming previous observations in Isyumov & Poole (1984) and Solari (1985).

3.5. VERTICAL DISTRIBUTION OF FLUCTUATING WIND FORCE COEFFICIENTS

AND CONTRIBUTION OF EIGENMODE

Figure 19(a}d) shows the vertical distributions of the #uctuating along-wind and across-
wind force and torsional moment coe$cients (standard deviation) obtained by each eigen-
vector and its principal coordinate, as well as those obtained from the original #uctuating
wind pressure data.

As shown in Figure 19(a), the along-wind force coe$cients depend mainly on the 2nd
mode. The contributions of the 3rd and 4th modes are also large, but those of the others are
negligible. The #uctuating wind force coe$cient by the 4th mode increases in the upper and
lower regions setting a node near the mid-height point. However, as shown in Figure 17(d),
the 4th mode shape on the windward wall has opposite signs in the upper and lower parts.
Therefore, the 4th mode along-wind wind forces in the upper and lower parts are mutually
out of phase.

Figure 19(b) shows the #uctuating across-wind force coe$cients. The greatest contribu-
tion comes from the 1st mode. The contribution of the 5th mode is also large, but those of
the others are very low. The 5th mode #uctuating wind force coe$cient also has a node near
the mid-height point and there are high-value regions at the upper and lower parts.
However, as shown in Figure 17(e), the 5th mode shape has opposite signs at the upper and
lower parts of the side wall, and the 5th mode across-wind forces in the upper and lower
parts are mutually out of phase.

As shown in Figure 19(c), the greatest contribution to the torsional moment comes from
the 1st mode, and the 5th mode contribution is signi"cant. The contributions of the
relatively high-order mode are also large in the #uctuating torsional moment coe$cient as
shown in Figure 19(d) (Kikuchi et al. 1997).

3.6. WIND FORCE DETERMINED FROM ONLY A FEW DOMINANT MODES

Figure 20(a}c) shows the temporal variations of generalized wind force coe$cients recon-
structed by only a few selected dominant modes.

The generalized along-wind force in Figure 20(a) was obtained from three modes, the 2nd,
the 3rd and the 4th. That for across-wind in Figure 20(b) was obtained from only two
modes, the 1st and the 2nd. The generalized torsional moment in Figure 20(c) was obtained
from 10 selected dominant modes. For comparison, the original generalized #uctuating
wind forces are also shown in the "gures. The wind forces reconstructed by the selected two
or three dominant modes almost completely coincide with the original generalized wind
force coe$cients. Considering that there are 500 modes in total, this is an amazing
reduction in the amount of necessary information.

3.7. RESULTS OF WIND RESPONSE ANALYSIS USING WIND FORCE DETERMINED

BY ONLY A FEW DOMINANT MODES

Time-domain response analyses were conducted for the 25-lumped-mass system shown in
Figure 14, where each mass has three degrees of freedom: along-wind, across-wind and
torsion. The natural period of the fundamental vibration mode of the building was set at 5 s



Figure 19. Vertical distribution of #uctuating wind force coe$cients derived from each mode: (a) along-wind
force; (b) across-wind force; (c) torsional moment; (d) torsional moment.
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Figure 20. Temporal variations of generalized wind force coe$cients reconstructed from the selected dominant
modes: (a) along-wind force from the 2nd, 3rd, and 4th modes; (b) across-wind force from the 1st and 5th; (c)

torsional moment from the 10 selected modes (1, 5, 10, 11, 13, 14, 16, 18, 21 and 31st modes).
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for both translational directions, and at 3)8 s for torsion. The damping ratio to the critical
value was set at 2% for the fundamental mode. The mean wind speed at the top
(H"200 m) was set at 55 m/s assuming a 100-year-recurrence wind speed in Tokyo.
A response analysis was performed for 600 s with wind forces comprising the selected
dominant modes according to the previous section: three modes for the along-wind force,
and two modes for the across-wind force. Regarding the reconstructed torsional moment,
10 dominant modes were selected as described later in Table 5.

Figure 21(a}c) shows the temporal variations of the top responses. The results of the
response analysis using the wind forces reconstructed by the selected dominant modes show
very good agreement with the original responses. Figure 22(a}d) shows the vertical distribu-
tions of maximum values and standard deviations of displacement, shear force, overturning
moment and torsional moment, respectively. Table 5 summarizes the maximum values, the
standard deviations, and corresponding error rates for along-wind displacement, across-
wind displacement and angular displacement at the top of the building. The responses using
the wind forces reconstructed by only the selected dominant modes agree very well with the
original responses, and the maximum error is less than 6%. It is thus demonstrated that
POD can extract the essence of each wind force and can very e$ciently reduce the necessary
information for simulation.

5. CONCLUDING REMARKS

This paper has discussed the e$ciency of POD and points to note in its application.
However, the principal coordinate obtained by POD is still merely a coordinate. Even for



Figure 21. Temporal variations of the top responses analyzed using wind forces reconstructed by the selected
dominant modes: (a) along-wind displacement; (b) across-wind displacement; (c) torsional angle.

TABLE 5

Results of response analyses using original wind forces and wind forces reconstructed
from selected dominant modes

Wind forces Response at the top (H"200 m)

Along-wind
displacement

(cm)

Across-wind
displacement

(cm)

Angular
displacement

(rad)

max s.d. max s.d. max s.d.

Original 21)3 6)67 56)6 16)8 0)0107 0)0025

Reconstructed from 22)5 6)46 53)7 15)9 0)0112 0)0026
selected dominant
modes*

Error (%) 5)6 3)1 5)1 5)7 4)8 3)4

*Along-wind force: 2nd, 3rd, and 4th modes.
Across-wind force: 1st and 5th modes.
Torsional moment: 1st, 5th, 10th, 11th, 13th, 14th, 16th, 18th, 21st and 31st modes.
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Figure 22. Vertical distribution of the maximum values and standard deviations due to response analysis using
wind forces reconstructed by the selected dominant modes: (a) displacement; (b) shear force; (c) overturning

moment; (d) torsional moment.
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the "rst mode, its physical meaning is an interpretation of the result after it came out and
cannot be generalized. Similarly, the other modes can also be compared with the various
aspects of the results and some resultant interpretations can be e$ciently made for the
phenomena. As shown in the application examples presented in this paper, it is possible to
relate the lower modes to physical phenomena such as vortex shedding, quasi-steady
assumption, and so on. By relating to the physical phenomena to achieve another important
purpose, it is possible to clarify the systematic structure hidden in the random #uctuation.
This work in determining the relationship itself can enhance understanding of the phe-
nomena and the research itself. Another practical e!ect of POD is a signi"cant reduction in
amount of information that needs be collected.

The authors emphasize that the mean value components have to be excluded in the
spatial correlation matrix, so that it should strictly be the covariance matrix. The eigenvec-
tors obtained with inclusion of the mean value components are contaminated by the mean
value vector, and have no physical relation with the characteristics of #uctuation of the
random "eld.

As POD is a method for extracting the hidden systematic structure from random
information, it can be thought of as a kind of "ltering technique. It can also be applied to
cases where it is necessary to remove the noise from noisy data in "eld measurements of
vibration modes and so on.
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